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SUMMARY 
The divide-and-conquer paradigm of iterative domain decomposition or substructuring has become a 
practical tool in computational fluid dynamics applications because of its flexibility in accommodating 
adaptive refinement through locally uniform (or quasi-uniform) grids, its ability to exploit multiple 
discretizations of the operator equations, and the modular pathway it provides towards parallelism. We 
illustrate these features on the classic model problem of flow over a backstep using Newton’s method as the 
non-linear iteration. Multiple discretizations (second-order in the operator and first-order in the pre- 
conditioner) and locally uniform mesh refinement pay dividends separately and can be combined syn- 
ergistically. We include sample performance results from an Intel iPSC/860 hypercube implementation. 
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1. INTRODUCTION 

The literature of computational fluid dynamics (CFD) ranges from elegant analyses of model 
systems to detailed analyses of realistic systems whose executions require hundreds of hours of 
supercomputer time. Software generally migrates from the former problem class to the latter at 
best slowly and not without performance penalties, because the source of elegance, efficiency or 
optimality is often the exploitation of special structure that is absent in applications. Therefore 
the gap in attainable computational performance on ideal and practical CFD problems has little 
prospect of closing completely. Rather, since problems with less uniform structure usually are 
harder to map efficiently onto multiprocessors, parallel computing would appear only to widen 
the performance gap between the ideal and the real, while offering absolute improvements to 
both. 

The combination of domain decomposition with preconditioned iterative methods extends the 
usefulness of numerical techniques for certain special partial differential equation problems to 
those of more general structure. The domains of problems with features inhibiting the global 
exploitation of optimal algorithms can often be decomposed into smaller subdomains of simpler 
structure on which extant solvers serve as local components of a parallelizable global approxim- 
ate inverse. The computational advantages are usually sufficient to allow for the iteration 
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required to enforce consistency at the artificially introduced subdomain boundaries, often even 
apart from parallelism. Size alone is often a sufficient advantage, since the computational 
complexity of many solution algorithms is a superlinear function of the discrete dimension, and 
thus p problems of size n / p  may be solved more cheaply than one of size n. 

Iterative methods based on choosing the best solution in incrementally expandable subspaces 
allow the tailoring of computations to specified accuracy requirements. These methods can use 
multiple representations of the same underlying operator, ultimately converging in terms of a 
desired ‘high-quality’ representation through a series of applications of the inverse of a ‘lower- 
quality’ representation, called a preconditioner, that is cheap or parallelizable or possesses some 
other advantage. Although already useful in linear problems and on serial computers, the ability 
to operate with multiple representations of the operator proves even more significant in non- 
linear problems and in parallel. In non-linear problems, for instance, preconditioners for the 
Jacobian can be amortized over many Newton steps, while the solution is advanced through 
always up-to-date matrix-free approximations to Jacobian-vector products. In parallel, pre- 
conditioners can be constructed whose action requires less data exchange than a higher-quality 
representation would. One way to view domain decomposition is as a means of creating 
parallelizable preconditioners for iterative methods. The iteration required to piece together the 
solution at the artificial subdomain boundaries may be folded in with the iteration already 
implicit in the multiple levels of operator representation and, ultimately, with an outer non-linear 
iteration as well. 

Domain decomposition is a natural basis for partitioning programmes across processors and 
partitioning data across memories, and allows a natural integration of local refinement, including 
refinements of mesh, of discretization order or even of operator and the representation of the 
unknown fields. Although domain decomposition is as old as the analysis of engineering systems, 
the past decade has provided a significant theoretical foundation for model problems, which has 
in turn provided heuristics for others. An aspect of interest to us is the migration in problem 
parameter space from the theoretically richly endowed ‘point’ of the linear, self-adjoint problem 
for a scalar equation on a (quasi-) uniformly refined grid to the region of non-linear multicom- 
ponent problems spawning a sequence of non-self-adjoint adaptively refined systems. Further- 
more, we are interested in formulating such problems in a modular manner convenient to the 
design and maintenance of parallel software. For reasons of flexibility and inertia in the modelling 
of chemically reacting flows in particular, we are primarily-interested in finite difference or finite 
volume discretizations, but without relying on first-order methods since they are almost never 
competitive when the criterion is fewest operations for a given accuracy. 

The philosophy of this paper has been set forth previously in References 1 and 2, where the 
gains of local refinement and multiple-order discretization respectively were illustrated. The 
backstep flow test problem with uniform mesh and discretization order was considered in 
Reference 3, where it was shown that most of the portions of the code associated with the non- 
linear and linear subtasks parallelize with comparable overhead. In this paper we show that the 
confluence of these various tributaries leads to a conveniently programmed parallel implementa- 
tion on medium-scale MIMD machines and we explore its parallel efficiency on one such 
machine, the Intel iPSC/860. In the interest of brevity we omit many algorithmic details covered 
in the references. 

Section 2 describes a basic two-level algorithmic framework for implicitly discretized convec- 
tion-diffusion systems. This is generalized in Section 3 to second-order adaptive refinements and 
placed in the context of an overall Newton iteration. The numerical results of Section 4 display 
the accuracy and parallel efficiency of some resulting combinations. We conclude in Section 5 
with a consideration of future objectives. 
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2. THE PHILOSOPHY O F  ITERATIVE DOMAIN DECOMPOSITION 

The domains of dependence of resolvents of elliptic operators, such as the spatial terms of the 
momentum and energy equations of (subsonic) fluid mechanics, are global, though there is a 
decay with the distance between the source and field points. The global dependence implies that 
data must travel across the grid from each point to all others during the solution process (for the 
satisfaction of sensible accuracy requirements). This requires a number of local data exchanges 
approximately equal to the discrete diameter of the grid or, possibly, a smaller number of longer- 
range exchanges derived from the use of multiple spatial scales. A length scale in between the 
integral length scale of the domain and the fine mesh parameter occupies a central place in our 
domain decomposition methodology. The intermediate scale need not directly determine the 
granularity of the parallelization, but it is convenient to base the parallel mesh data structure 
upon it. 

2.1. Global data transport 

'Classical' results quantifying the trade-offs between purely local and global data transport are 
given in References 4 and 5. These papers show how preconditioned conjugate gradient iteration 
may be used to obtain solutions to two-dimensional self-adjoint elliptic problems in a number of 
iterations at most weakly dependent on the fine grid resolution through the logarithm of the ratio 
of the diameter of subdomains into which the global domain is divided, H, to the mesh parameter 
h (see Figure 1). The cost in each case is the iterated solution of a subdomain vertex problem 
equivalent to a coarse discretization of the original operator with the subdomains as elements, 
along with the solution of the independent problems on the subdomains themselves (and on the 
one-dimensional interfaces in the case of non-overlapping subdomains). Thus the preconditioner 
is two-scale and requires regular non-nearest-neighbour exchanges. For the preconditioner to be 
cost-effective, the non-local work should be subdominant. Practically, this requirement imposes a 
minimum H / h  ratio. If the subdomain vertex solve in the preconditioner is replaced with a simple 
diagonal scaling, which removes the requirement of non-nearest-neighbour data exchanges, the 
bound on the iteration count rises in proportion to the number of subdomains on a side, O(l/H). 
If the vertex solve is retained and instead the subdomain solves are replaced with a simple 
diagonal scaling, the bound on the iteration count rises in proportion to the number of 
subintervals on a subdomain side, O(H/h) .  Finally, in the presence of simple diagonal pre- 

1 
3-l 

H 

Figure 1. Schematic diagram showing length scales of discretization, h, and decomposition, H 
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conditioning only (no vertex solve and no subdomain solves), it is a classical result for elliptic 
problems that the conjugate gradient iteration count rises in proportion to the number of 
subintervals on a side, O(l/h). The trade-off between the amount of work done in the pre- 
conditioner and the total number of iterations is thus well characterized asymptotically. 

The results for two-scale preconditioned self-adjoint problems have been extended in Re- 
ferences 6-8 to non-self-adjoint problems. Conjugate gradient iteration is replaced with the 
generalized minimum residual (GMRES) method and the bounds generally worsen by one or 
more powers of the factor 1 +log(H/h). It is required in currently available convergence proofs 
that the coarse grid be sufficiently fine; in particular, a subdomain Reynolds number must be 
bounded. (Some convergence proofs for multigrid on non-self-adjoint problems avail themselves 
of a similar restriction.) Predecessors of the theoretically characterized non-self-adjoint form of 
the algorithm have been described for a scalar partial differential equation in References 1 and 9. 
These algorithms require more iterations of cheaper preconditioners and are roughly as effective 
(measured in execution time) as those possessing optimal convergence rates until H and h take on 
rather small values. 

Whether the subdomains are assigned indivisibly to processors (as in our current codes) or 
whether the uniform tasks they represent are further subdivided in SIMD fashion, two-scale 
preconditioners significantly alleviate the sequential bottlenecks of global preconditioners such as 
incomplete factorizations. However, truly massive parallelism may require yet richer hierarchies 
of scales. 

2.2. Preconditioned Krylov iteration 

Our domain-decomposed preconditioners are used in conjunction with the Krylov iterative 
method GMRES, described algorithmically in Reference 10 and analysed theoretically in 
References 11 and 12 (in the equivalent form of the generalized conjugate residual method). Each 
iteration of GMRES involves a matrix-vector product requiring local data exchanges only and 
the preconditioner solve, in addition to some inner products. GMRES converges in a number of 
iterations proportional to the number of distinct clusters of one or more eigenvalues of the 
preconditioned operator. Loosely speaking, the greater the accuracy required or the closer the 
cluster to the origin, the smaller is the tolerance on what constitutes a single ‘cluster’. Efficient use 
of GMRES in elliptic problems generally requires preconditioning to produce clustering. The 
appeal of GMRES is that it is robust and requires no user-estimated parameters. However, other 
iterative methods potentially requiring fewer inner products and smaller memory could be used 
instead; we mention the GMRES-Richardson hybrids in References 13 and 14 and the 
Bi-CGSTAB method in Reference 15 among contemporary candidates. 

We summarize this section by establishing notation. A general framework for iterative domain 
decomposition methods for solving linearized elliptic systems consists of a global discrete 
operator A,  a global approximate inverse B - ’ ,  an iterative method requiring only the action of 
A and B - I ,  and a geometry-based, contiguity-preserving partition of unknowns inducing a block 
structure on A and B. 

We denote all subdomain vertices ‘cross-points’. Ordering the interior points first, the inter- 
faces connecting the cross-points next and the cross-points last imposes the following outer tri- 
partition on the global discrete operator A: 
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Note that the partitions vary greatly in size. If N is a quasi-uniform subdomain diameter and h 
quasi-uniform fine mesh width, the discrete dimensions of A, ,  A ,  and A,  are 8 ( K 2 ) ,  CO(H-'h-') 
and cO(H-2)  respectively. 

The structure of our preconditioner B is closely related to a conformally partitioned matrix 

consisting of the block upper triangle of A,  except for the replacement of A ,  with an H-scale 
discretization of the original operator on the vertices, B,, and the replacement of A ,  with an 
h-scale discretization of the original operator along the interfaces of the decomposition with the 
normal derivative terms discarded, B,. (See Reference 16 for some numerical tests of this interface 
preconditioner.) 

The application of B- '  to a vector u = ( u I ,  u,, u , ) ~  consists of solving Bw=u for 
w=(wI ,  w,, w,)'. It begins with a cross-point solve with B,  for w,. This updates the right-hand 
sides of a set of independent interface solves for subvectors of w B  through A,, and the right-hand 
sides of a set of independent interior solves for subvectors of wI through AIc. The interface solves, 
in turn, further update the right-hand sides of w, through A,,. Finally, the subdomain solves are 
performed. Note that the solves for w, and w, provide 19(H-~)-scale parallelism. 

There is no dependence within the preconditioner of the cross-point or interface solutions upon 
the result of the interior solutions. This distinguishes the method from References 4 and 7 and 
means that the O(h-')-sized block of the preconditioner is visited only once per iteration. 
However, an important variation of the preconditioner exists which represents a compromise 
between the strictly block triangular algorithm above and the cited methods. Following Refer- 
ence 4, we have found it advantageous to replace the right-hand-side values uc with weighted 
averages of the right-hand sides along adjacent interfaces before solving the cross-point system. 
This approach incorporates some lower triangle coupling without any additional solves (see 
Reference 1 for a detailed matrix interpretation). 

3. PRACTICAL DOMAIN DECOMPOSITION ALGORITHMS FOR CFD 

In the present contribution we merge four tributaries of our recent work: (1) local uniform mesh 
refinement, (2) use of a pair ( A ,  B )  in which B is of lower order (defect correction), (3) non-linear 
solvers and (4) implementation on parallel processors. 

3.1. Locally uniform mesh refinement 

In many cases the problems generating the discrete systems to be solved by domain decomposi- 
tion have several different physical length scales. Since the polynomial approximations under- 
lying local finite discretization methods are length-scale-specific in their validity, mesh refinement 
(perhaps in combination with refinement of discretization order) is often used to produce an 
accurate solution. Locally uniform mesh refinement' is an adaptive resolution technique that is 
well suited to domain decomposition. By it, rectangular subdomains are refined with locally 
computationally regular tensor product meshes. This refinement permits easy and efficient 
vectorization and allows consideration of fast solvers as components of domain-decomposed 
preconditioners. Different subdomains may have different mesh refinement, but the refinement is 
of a uniform scale within a single subdomain. This regularity allows a concisely expressed and 
flexible algorithm. Changes in grid refinement at interfaces between subdomains are accommod- 
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ated with mutually overlapping phantom points and biquadratic interpolation. The phantom 
points allow the use of conventional finite difference techniques (for second-order differential 
operators) in generating the difference equations at the subdomain interfaces. The selection of 
general refinement criteria is well examined in the literature (see e.g. Reference 17 for a recent 
review) and beyond the scope of the present contribution. In the specific example presented 
below, a sufficient refinement strategy is suggested by the known location of the vorticity 
singularity and confirmed by the ability to accurately reproduce known results. Much more 
efficient refinement strategies exist and we plan to incorporate them in a self-adaptive way in the 
future. 

In Reference 1 the classic problem of Poisson’s equation in an L-shaped domain was used to 
illustrate the memory and execution time savings allowed by subdomain-based local mesh 
refinement over global refinement, without sacrifice of accuracy. For an effective resolution of 
hW1=128, for instance, a reduction factor of just over six in execution time accompanied a 
reduction factor of just over five in the number of unknowns required to represent the solution. 
Empirical observation of iteration counts in the globally and locally refined cases suggests that it 
is the finest mesh spacing, not the number of unknowns per se, that determines the convergence 
rate in variably refined domain decomposition algorithms. Although the theory developed for 
quasi-uniform grids cited in Section 2.1 is not directly applicable to our tests, the results of the 
tests and the theoretical estimates are consistent if the maximum H/h,  i.e. the discrete dimension 
of the finest tile, is employed in the latter. 

Figure 2 illustrates how the locally uniform refinement technique is applied to the L-shaped 
backstep flow problem. 

3.2. Accelerated defect correction 

A conventional defect correction method for solving the system of equations 

N (u) = 0, (3) 
where N depends continuously on u, is as follows. We suppose that we can easily solve a related 
problem 

N(u)=J: 

N ( l l O ) = O  

Then we initialize u by solving 

Figure 2. Schematic diagram of a composite grid for the backstep flow problem, with well-developed inflow (left) and 
outflow (right) velocity profiles superposed. The upper and lower surfaces are rigid walls. Refinement is employed near the 
step and in the recirculation region (The composite grids actually used to generate the data in the following section are 

finer than shown here.) 
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and iterate 

N ( u k  + I )  = N ( u k )  - N ( uk). 

If the iterations converge, they converge to a solution of (3). In our context, N is simply a lower- 
order discretization of N .  

For linear N (  u )  this stationary defect correction can be accelerated by using the discretization 
N as the basis for a domain-decomposed preconditioner B for A = N .  In Reference 2 we found an 
accelerated version of defect correction to be useful in maintaining second-order accuracy in a 
CFD finite difference discretization while employing only more convenient first-order upwind 
differencing for the convective terms in the preconditioner. Full second-order-in-h truncation 
error convergence was observed for smooth problems. Two types of measurements were made to 
quantify the performance of this algorithm. For a fixed h the number of iterations required for 
algebraic convergence of the preconditioned GMRES method was compared with a case in which 
A and B were based on the same first-order upwind discretization. The method with second-order 
A required more iterations, but never more than 1.5 times as many. In terms of the execution time 
required to achieve a fixed truncation error, the method with second-order A was an order of 
magnitude more efficient because of its sparser grid. 

3.3. Newton's method 

For the solution of steady reacting flow problems, robust variations of Newton's method, assisted 
as necessary by parameter continuation, are often preferable to less fully coupled iterative 
methods or associated explicit time-marching methods (see e.g. Reference 18). We regard the 
current work as a prelude to building reacting flow codes for MIMD parallel architectures; thus it 
is natural to focus on Newton methods. 

We write the overall system in the form 

F(4)=O, (4) 

where 4 represents a column vector of all of the unknowns. Equation (4) may be solved efficiently 
by a damped modified Newton method provided that an initial iterate 4 ( O )  sufficiently close to the 
solution 4* is supplied. The damped modified Newton iteration is given by 

4 ( k + 1 ) = 4 ( ~ ) + ~ ( f ) S 4 ( k ) ,  ( 5 )  

the matrix J"(') being an approximation to the actual Jacobian matrix evaluated at the kth iterate. 
We refer to as the kth update. When A ( k ) =  1 and J"(k )=J(k )=(@k) )  aF/a+ for all k, a pure 
Newton method is obtained. The iteration terminates when some (scaled) two-norm of 
drops below a given tolerance. In well-conditioned systems this will of course also be true of the 
norm of F(4ck)) .  

From the discussion of equations (5) and (6) we identify the five basic tasks that together 
account for almost all of the execution time required by the Newton algorithm: (1) DAXPY 
vector arithmetic, (2) the evaluation of residual vectors, (3) the evaluation of Jacobians, (4) the 
evaluation of norms and (5) the solution of linear equations involving the Jacobian matrix. The 
DAXPY requires no data exchanges between neighbouring points. The residual and Jacobian 
evaluations (performed analytically here) require only nearest-neighbour data exchanges. The 
evaluation of norms and the linear system solution require global data exchanges and are hence 
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the focus of a parallel implementation. In a general-purpose Newton algorithm, significant 
amounts of code must be written beyond the steps listed here. Automating the continuation, 
damping and Jacobian re-evaluation strategies can greatly affect the efficiency of a Newton 
method. However, these essential additional tasks require insignificant amounts of computational 
work not already in the five categories above. 

3.4. Parallel implementation 

Preceding sections have described a convenient domain-based clustering of work into ‘tiles’ 
while flagging the phases of the overall algorithm that require inter-tile data exchanges. A parallel 
implementation follows directly, except for decisions regarding the solution of the global coarse 
grid problem, for which the best algorithm is architecture- and problem-dependent. Many details 
of serial, parallel shared memory and parallel distributed memory domain decomposition 
algorithms for linear problems have been given in References 9 and 19. It is interesting that ‘good’ 
algorithms for all three computing environments can share over 95% of the code in common. 

Work arrays for the data structures associated with each tile are allocated individually to 
available processors according to heuristic load balance criteria, without priority concern for 
proximity in the processor network of processes associated with neighbouring subdomains. 
(Users of domain decomposition algorithms on earlier Intel hypercubes concluded that the 
penalty for failing to preserve nearest-neighbour connections in subdomain-to-processor map- 
pings is at most 20% in total run time.” This is non-negligible, but worst-case load imbalance 
penalties when nearest-neighbour connections are slavishly preserved can be arbitrarily higher. 
Mapping algorithms simultaneously satisfying good load balance and good subdomain- 
processor locality constitute an ongoing research effort. From a practical point of view a 
cost-benefit analysis of the mapping algorithm itself must be taken into consideration. For 
representative pointers into this literature, References 21 and 22 may be consulted. A buffer is 
maintained around the perimeter of each tile of a width corresponding to the semibandwidth of 
the difference stencil in use of that tile. These buffers are refreshed by interpolation from 
neighbouring tile interiors at appropriate synchronization points. 

Generally, individual processors are responsible for multiple subdomains, and tiles assigned to 
the same processor are processed sequentially within each synchronized phase of the algorithm. 
Optimizations have been incorporated into the parallel code to packetize data exchanges between 
the same processors resulting from different tile-tile interfaces. On a machine where inter- 
processor communication is relatively expensive, such as the iPSC/860, message buffering is 
potentially valuable, but more attention to the tile-processor mapping is required to fully exploit 
it. The major uses of the freedom of MIMD (as opposed to SIMD) programming are in the 
variable resolution of tiles (for adaptive discretization), the variable number of tiles per processor 
(for load balance) and the enforcement of boundary conditions. Boundary conditions are often a 
bugbear of parallel programming, but we must recognize them only in the preconditioner and 
only in an approximate manner. This is because local boundary conditions of any mathematically 
reasonable type can be cast in the form of matrix-vector products with the operator A.  

It is typically uninviting to solve the relatively small preconditioner coarse grid problem 
defined by the tile vertices, a sparse linear system, in a distributed fashion. There is too little 
arithmetic work per processor at modest tile-to-processor ratios. Neither is it optimal to gather 
the distributed right-hand-side data for this problem onto a single processor, solve it sequentially 
while the other processors wait, and scatter the result back. The communication time of the latter 
approach can be cut roughly in half by broadcasting the right-hand-side data to all processors 
and solving redundantly on each. The redundant coarse grid solution is used in generating the 
parallel performance data given below. 
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A different technique, called the ‘asynchronous cross-point solve’, allows the inversion of the 
diagonal blocks of B,  and A, in the preconditioner to begin before the coarse grid solution has 
been completed. Since the result of the preconditioner solve is linear in the components of the 
right-hand side, it is possible to compute in a preprocessing step the discrete Green functions 
associated with each vertex. Storing these Green functions requires four extra vectors of the 
dimension of the number of unknowns in the discretization for each unknown field in the system 
of governing PDEs. (Thus, for example, a two-component streamfunction-vorticity system 
requires eight extra vectors of size 2N,  where the composite grid consists of N points). After the 
coarse grid solve is completed, its high communication requirements overlapped with the bulk of 
the preconditioner solve, the proper components of the vertex Green functions can be added in. 
The vertex Green functions would generally have to be recomputed each time the Jacobian was 
re-evaluated, at the cost of four sets of subdomain solves. The optimal trade-off between the 
potentially inhomogeneous workload and extra preprocessing and storage of the Green function 
method versus the parallel inefficiency of solving the vertex problem is both architecture- and 
problem-specific and has not been pursued in the current code. 

4. FLOW OVER A BACKSTEP 

We illustrate the capabilities of the non-linear domain-decomposed solver on a classic model 
problem from computational fluid dynamics, the flow over a backstep, studying both solution 
accuracy as a function of discretization and parallel performance as a function of refinement and 
processor granularity. 

Although it is a favourite demonstration problem, there is no single canonical backstep flow 
configuration in the literature. The principal variations lie in the choice of symmetric channel 
geometry or a flat wall opposite the step, in the characterization (plug flow, fully developed or 
experimentally measured) of the upstream boundary conditions, in the ratio of step height to 
channel width and in the smoothness of the step itself. For present purposes we fix these choices 
as a flat opposite wall, a fully developed inlet profile (located two step heights upstream) and a 
channel expansion ratio of two to three occurring abruptly at the step (see Figure 2). 

Inasmuch as the flow is well characterized as laminar, steady and two-dimensional in the 
Reynolds number range we model, we use the streamfunction-vorticity formulation of the 
incompressible Navier-Stokes equations, in which velocity components (u, v )  are replaced with 
($, w )  through 

(7) 
au aU 

aY ’ ax’ ay ax*  
u=- a* v=-- w w=--- 

The streamfunction satisfies the Poisson equation 

- VZ * -I- w =o, (8) 
and the vorticity the convection4iffusion equation 

Re u-+v-  -V2w=0 .  (E :) (9) 

This system is non-dimensionalized with the step height as the reference length and the 
centreline inlet velocity as the reference velocity. (Some authors employ the mean inlet velocity in 
non-dimensionalizing. Their Reynolds number Re is thus two-thirds the size we report for the 
equivalent flow configuration.) 
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We observe that (apart from boundary conditions) the Jacobian of this system has the form 

in which matrices C ,  and C, approach zero with the Reynolds number. If convenient boundary 
conditions could be specified for the vorticity, a good preconditioner for this system could 
comprise a pair of fast Poisson solvers, but this condition is typically not met in practice. 

The boundary conditions employed in the numerical tests are specified with reference to 
the domain in Figure 2. The inlet streamfunction and vorticity are derived from integration 
and differentiation respectively of the assumed well-developed upstream velocity profile 
u(0, y) =y(2 - y) and u(0, y) = 0. ($ is referenced to zero at the origin of co-ordinates.) Along the 
fixed, impenetrable, no-slip upper and lower walls $ is constant; hence all its tangential 
derivatives are zero. Through equation (8), o is thus set equal to - a Z $ / a n 2 ,  where n is the unit 
normal, chosen in the vertical by default at the degenerate corner of the step. (Numerical 
experiments with alternative choicesz3 did not suggest an obvious preferred way of breaking this 
degeneracy, the mathematical artefact of an infinitely sharp step, and it is evident in the results 
that our arbitrary choice is not limiting as regards the phenomena of interest.) Finally, along the 
outflow boundary we used extrapolation conditions a$/& = 0 and a2$/ax2 = 0. These conditions 
were accuracy-limiting at sufficiently large Reynolds number in a straightforwardly removable 
way, as described below. 

We employed a variety of discretizations at seven Reynolds numbers spanning the range from 
50 to 200 in increments of 25. We ran the full set of problems on a Sparcstation-1, then ran a 
subset of problems at Reynolds number 100 on the Intel iPSC/860, varying the number of 
processors employed from the smallest number containing sufficient aggregate memory up to the 
maximum available (32) in order to evaluate performance. We employed zeroth-order continua- 
tion to shorten the time required to sweep through Reynolds number space; that is, we used the 
solution at the next lower Reynolds number as a starting estimate at the current one, beginning 
with the case (Re = 50) in which the non-linear influence is the smallest. Continuation is often 
employed in non-linear solvers for robustness, but in this Reynolds range we employed it only for 
convenience. In no case did the Newton algorithm suffer convergence difficulty in starting from 
‘cold’ estimates obtained either by extrapolating the inlet flow unchanged downstream and 
patching it to an initially stagnant region behind the step or by assuming the entire domain to be 
stagnant. 

A sample solution at Re= 100 is contoured in Figure 3. The dividing streamfunction contour 
lies slightly below the top of the step, towards which it climbs from a pure Stokes (Re=O) 
solution, reproducing a known feature of this flow field. The centre of the channel is vorticity-free. 
The vorticity is high on either side of the channel just upstream of the step, and the highest 
vorticities occur in the neighbourhood of the step itself, where it is undefined. It is evident from 
the figure that the flow returns to an almost symmetrical shape following the asymmetrical 
expansion, thought the exit profile has not yet achieved its asymptotic parabolic profile only eight 
step heights downstream. 

4.1. Solution accuracy 

Since no exact solutions of the backstep flow problem are available, we rely on comparisons of 
functionals of the solution obtained previously by other investigators in evaluating the accuracy 
of our numerical solutions. Four such scalar functionals are the length of the recirculation zone 
(as defined by the reattachment point of the dividing streamfunction contour), the strength of the 
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Figure 3. Contour plots of streamfunction and vorticity for Re= 100 flow over a backstep (In the display orientation the 
flow is from bottom to top and the true aspect ratio is distorted, allowing more detail in the transverse direction.) 

recirculation (as defined by the maximum magnitude of the streamfunction in the recirculation 
region) and the downstream and transverse co-ordinates of the point at which the maximum 
magnitude of the streamfunction is achieved. 

For Reynolds numbers in the range investigated (5&200), the length of the recirculation zone is 
well approximated as a linear function of Re. (See Reference 24, which discusses a similar study 
with the spectral element method and supplies references to earlier experimental and numerical 
investigations.) We adopt the notation L, for this length (measured in step heights) and show in 
Figure 4 previously obtained results for L, versus Re along with results of our domain 
decomposition code. The spectral results of Reference 24 and the (evidently highly resolved) finite 
difference results of Reference 25 on domains sufficiently extended in the downstream direction 
fall very tightly around the dashed line connecting Re = 50, L, = 2.87 with Re = 200, L, = 8-18. (At 
higher Reynolds numbers the time-averaged reattachment length is known to slow as a function 
of Re, achieve a maximum and eventually retreat part way upstream, though this behaviour 
occurs in the turbulent regime.) Note that the reattachment point at Re = 200 lies a bit beyond the 
edge (dashed cut-off) of the domain of Figure 2. Because an accurate L, is unmeasurable in this 
case, some data points are missing at Re=200. The two data points shown at Re=200 
correspond to discretizations that are artificially diffusive enough to severely shrink the recircul- 
ation zone. The close approach of L, to the boundary at Re= 175 allows one to show the manner 
in which the extrapolative downstream boundary condition fails by pulling the tail of the 
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Figure 4. Reattachment length versus Reynolds number for six different combinations of mesh refinement and discret- 
ization order for the backstep flow problem 

recirculation zone out of the domain. The less artificially diffusive the discretization, the greater is 
the effect of the outflow boundary condition on L,. 

As listed in the key to Figure 4, first- and second-order upwinding are combined with 
resolutions of 10 grid points per unit length (base) and twice and thrice this resolution in refined 
regions near and downstream of the step. It is observed that switching from first- to second-order 
discretization is more effective than adaptive h-type refinement and that a combination of second- 
order and modest refinement achieves nearly full accuracy for the Reynolds numbers considered. 
Using accepted values of the reattachment length at various Reynolds numbers to define errors, 
the first-order discretizations plainly yield first-order convergence whereas the second-order 
discretizations yield superlinear convergence, full quadratic convergence being difficult to 
measure with just three points. 

The maximum magnitude of the streamfunction in the recirculation zone normalized by the 
difference in streamfunction across the entire channel, lA$ Jmax/$O, is known to approach from 
below a value of approximately 2% as the Reynolds number increases through our range of 
interest. The broken line in Figure 5 closely fits the data of Reference 24 in the range shown and 
the markers show how the values of recirculation strength are approached under the same set of 
six discretization combinations tested above. For this rather sensitive functional, doubling the 
resolution is more effective than doubling the order relative to the crudest approximation. The 
fundamental problem of upwind differencing in the presence of recirculation is discussed in 
Reference 26 and references cited therein. Fortunately, recirculation occurs in flow regions where 
the Reynolds number based on the local velocity is small in typical applications. In such regions, 
second-order central differencing in A poses no problems for the upwind-preconditioned system' 
and the local discretization can be adaptively switched. However, this adaptive switching is not 
yet incorporated. 

Throughout the middle of the Reynolds number range, the downstream co-ordinate of the 
point of maximum recirculation streamfunction relative to the edge of the step and normalized by 
the overall recirculation zone length, Axm/L,, is 0.3 f0.01. The corresponding transverse co- 
ordinate Aym is 04+0.03 step heights, nearly independent of Re. These are both in close 
agreement with earlier numerical and experimental results. 
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Figure 5. Maximum normalized recirculation streamfunction versus Reynolds number for six different combinations of 
mesh refinement and discretization order for the backstep flow problem 

From the graphs it is clear that a first-order upwind method is an inefficient means of obtaining 
accurate solutions as the Reynolds number increases, but that it nevertheless makes convenient 
preconditioner for a higher- (here second-) order upwind operator. These conclusions are not 
new; the novel aspect of this work is the modular manner in which the composite grid 
preconditioned operator is constructed, which leads to convenient local refinement and 
parallelism. The selection of which tiles to refine and how much to refine them was crudely guided 
by knowledge of the problem but is clearly amenable to finer tuning through automatic error 
estimation. Perhaps the worst aspect of the performance of the less accurate methods is that they 
fail to detect that the domain is too short at the highest Reynolds numbers tested because of their 
artificially high diffusivity. Complaints that heavily upwinded discretizations conceal their own 
errors are common in the literature and are among the strongest incentives for building 
modular software that makes checking alternative discretizations and refinements feasible and 
convenient. 

Counting streamfunction and vorticity values separately, there are 5862 degrees of freedom in 
the base grid, 10422 in the intermediate and 21 702 in the most refined problem. We emphasize 
that these are far from competitive refinements for tile-based finite difference discretizations, since 
the streamwise direction is very overresolved relative to the transverse when grid elements are 
squares as here. Non-isotropic tessellations and non-isotropic refinement of individual tiles are 
clearly possibilities that fit comfortably within the tile framework. The data above serve only to 
show how refining locally and changing the operator order may be done without sacrificing 
regularity in the implicit portions of the computation. Although not obtained on optimal 
discretizations, the data make positive statements about the discrete solution process. For 
convective4iffusive problems in which geometrical complexities in the boundary and the 
distribution of sources or sinks require large numbers of unknowns, the fully implicit, fully non- 
linear iterative solver performs robustly. 

4.2. Convergence behaviour 

the numerical experiments reported here. 
We comment briefly on several aspects of the non-linear and linear algebraic convergence in 
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The effectiveness of the continuation procedure can be communicated by means of a typical 
example from the ‘middle’ of the physical and numerical parameter space explored in this study. 
We consider the Re = 100 flow with a second-order upwind operator and one level of refinement 
from a base grid consisting of two tiles per unit length (the step height) and five mesh intervals per 
tile, resulting in an effective h-’  of 20 in the refined regions. The following timings are quoted 
from a Sparcstation-1. From a ‘cold’ start with an initial non-linear residual Euclidean norm of 
2-13 x 10, four Newton steps were required to drop the final residual to 9.96 x These four 
Newton steps required a total of 132 preconditioned GMRES iterations (with a different first- 
order upwind domain-decomposed preconditioner for each of the four sets) and a total of 229 s 
of CPU time. From a ‘warm’ start consisting of the converged solution to the problem at 
Re = 75 and an initial non-linear residual Euclidean norm of only 4.25 x 10- ’, three Newton steps 
brought the final residual to a comparable 9.36 x The last Newton step required only one 
preconditioned GMRES iteration, thus the construction of the preconditioner for the third stage 
was largely unamortized effort; nevertheless, the totals of 63 GMRES iterations and 103 s of CPU 
time represented a little less than half the effort of the ‘cold’ start case. 

The relatively modest relative reductions in non-linear residual (O(  lo3)) at which convergence 
was declared were sufficient to bring out the full truncation error potentials of the discretizations 
employed. To evaluate this, we ran a second ‘cold’ case until the final non-linear residual was 
9.85 + or three additional orders of magnitude. This required three additional Newton steps, 
for a total of seven, and totals of 254 preconditioned GMRES iterations and 463 CPU seconds. 
No differences were observed in any of the functionals plotted in the previous subsection. Thus 
the nearly doubled numbers of GMRES steps and CPU cycles were unnecessary from a ‘bottom- 
line’ viewpoint. 

As can be gathered from the comparison of the just-cited ‘cold’ runs terminated at different 
stages, we observe a Newton convergence (as monitored by the residual, since the exact solution is 
not known) which is closer to linear than to quadratic. It is difficult to estimate how much of the 
convergence history is spent in the domain of quadratic convergence of Newton’s method in these 
problems, but we do not expect to see full quadratic convergence because we employ an inexact 
Newton method; that is, we tune the convergence of the linear system solves at each Newton step 
to the outer progress, with a mixed relative-absolute tolerance. Further experimentation may 
yield better couplings of inner to outer iterations for this class of problem, but for the precision 
with which we report relevant functionals of the overall solution in this investigation the 
asymptotic convergence rate of Newton’s method is not a crucial feature. 

We noticed two interesting couplings of the convergence progress of the backstep problem to 
the discretization technique. Considering first the discretization order, we found that the first- 
order discretization required more Newton steps of fewer GMRES iterations each than the 
second-order discretization on the same grid to achieve a given level of non-linear residual 
reduction. Rather than four Newton steps comprising 132 GMRES iterations in the short ‘cold’ 
start case discussed above, a first-order discretization of the same problem required six Newton 
steps comprising a total of 123 GMRES iterations. The final non-linear algebraic residual was a 
comparable 9.78 x and the CPU time required was only 149 s instead of 229 s. Since the 
approximation to the underlying differential equation was demonstrably superior for the second- 
order discretization, the extra 54% of CPU cycles was well worth it, but the difference in algebraic 
behaviour of the two discretizations is interesting to note. It suggests the hypothesis that a push to 
higher-order upwind discretizations would eventually be defeated by the rising cost of solving the 
resulting discrete equations. The cross-over point remains to be determined and should be 
evaluated on the basis of CPU time for a given solution accuracy. 

Another interesting coupling of the convergence progress to the discretization concerned the 
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grid density. For a given discretization order the same 'cold' start Re = 100 problem was run at 
globally ungorrn resolutions of h- ' = 10,20 and 40. The largest of these problems required 90 642 
degrees of freedom for its representation. For our cold start the first Newton step is based on a 
flow field containing no vorticity singularities and is discussed as a special case immediately 
below. Immediately following Newton steps required substantially more GMRES steps than the 
first one at all grid densities. However, the effect was more pronounced at the higher grid 
densities. Thus the h-' = 10 case jumped from eight to 31 GMRES iterations between Newton 
iterations 1 and 2, the h-' = 20 case from 11 to 51 GMRES iterations and the h-' =40 case from 
14 to 79 iterations. Since it is not practical to store Krylov subspaces of such high degree for such 
large problems, we were forced to use restarted GMRES in these tests, which requires more 
iterations than a full GMRES. We used a maximum Krylov dimension of 40. Newton steps 
subsequent to the second generally required successively fewer GMRES steps, tapering to fairly 
small numbers in the last outer iteration. A practical implication from this study is that highly 
resolved flow computations should be approached through a sequence of grids ranging from 
coarse to fine, so that much of the numerical shock of vorticity singularities can be distributed at 
coarser scales and subsequently refined. This practice is of course fundamental to the FMV form 
of multigrid and can be recommended on theoretical and practical grounds in the context of the 
solution of BVPs by Newton's method; see e.g. Reference 28. 

Finally, we note in the preceding paragraph the logarithmic growth in h-' of the number of 
GMRES iterations required in the first Newton step. Each doubling of the mesh density h -  (with 
the same underlying tessellation) resulted in a constant increase of three in the number of 
iterations required. This follows the theory for the scalar equation summarized in Section 2.1. 

With the exception of the discussion of linear problems in the last paragraph (addressed in a 
larger context in Reference I), these remarks must be regarded as specific to the flow configura- 
tion studied. We expect, however, that they provide useful rules of thumb for domain-decom- 
posed iterations for non-linear elliptic BVPs and we plan to ascertain their generality in a variety 
of cold and reacting flow configurations in subsequent reports. 

4.3. Parallel performance 

We conclude this section with Table I showing performance curves for the tile algorithm on the 
Intel iPSC/860. Because parallel efficiency is crucially dependent upon arithmetic task and 
processor granularity and load balance, we investigate power-of-two sequences of problem and 
processor array sizes. Because typical problems are too large to fit on a single processor, we 
cannot report overall speed-ups, but report relative speed-ups with each doubling of processor 
array size. 

Traversing columns, we observe the typical degradation in speed-up as processors are added at 
a fixed problem size. Traversing rows, we observe the typical improvement in speed-up as the 
problem size is increased at a fixed processor force. Going down the main diagonal, we note that 
parallel performance is maintained when processor and problem sizes are scaled in proportion. 
(An exception occurs in the last row (p=32), where systematic load imbalances occur because 
p does not evenly divide the number of tiles for the first time in the table; thus half the nodes have 
three tiles and the other half have four.) However, we note that overall execution time is not likely 
to be optimized by indefinite increases in the effective h-' at fixed tessellation; a more complete 
study would include several ( p ,  h-')-planes like Table I at different H-'. The subdomain 
factorization complexities currently contain terms cubic in h-  and, similarly, the cross-point 
factorization complexities contain terms cubic in H - '. These leading terms should be balanced 
against one another or the modules contributing them should be replaced with, for instance, 
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Table I. Total execution time T(in seconds) and relative speed-up s over a range of numbers of 
processors, p ,  of the Intel iPSC/860 for five different discretizations of the backstep flow 
problem at Re = 100, solved by using Newton's method. All data are for a fixed tessellation of 
112 tiles. Labels 'Global' and 'Local' refer to the span of the refined regions, N is the total 
number of unknowns in the discrete system and I is the number of GMRES iterations required 
in executing the first Newton step. Missing entries could not be computed because of memory 
limitations in smaller clusters of processors. Perfect relative speed-ups between successive rows 

would be 2.0 

Global Local Global Local Global 
N = 5862 N =  10422 N = 22 922 N = 40 742 N = 90 642 

1 1 = 8  11=11 I ,  = 11 I,=13 11=14 

P T S T S T S T s  T 
~~ ~~ ~~ 

- - - - - - - 2 16.3 - 

4 10.2 1.60 172 - 

8 6.3 1.62 10.1 1.70 20.6 - 

- - _~. - - 

- - - 

16 4.3 1.47 6.4 1.58 11.7 1.76 29-9 - - 

32 3.7 1.16 4 7  1.36 8.2 1.42 17-5 1.70 49.3 

multigrid solves. Multigrid makes a particularly attractive solver for larger subdomain problems, 
since the subdomains generally possess greater uniformity than the problem as a whole. 

The table also affords a crude indication of the value of adaptive refinement. Comparing the 
'Local' and 'Global' columns at the same he;,', we see memory and execution time savings of 
factors of two or more for local refinement, with the memory savings allowing a smaller feasible 
number of processors to solve the problem to the same he;:. 

Although of dubious value in evaluating algorithms, raw performance data on the iPSC/860 
may also be of interest. Our aggregate flop rate on 32 processors ranged from about 1.5 Mflops in 
the cross-point solve phase to 126 Mflops in the parallelized matrix-vector products with the 
operator A for the largest problem of over 90 000 unknowns. For this largest problem, 110 and 
99 Mflops respectively were realized in doing the concurrent subdomain factorizations and 
backsolves constituting the A; phase of the preconditioner application. Extrapolation of some 
of these aggregate rates to larger clusters of processors and problem sizes is non-trivial because of 
both external communication and internal memory hierarchies, but we would expect execution 
rates for operations like the subdomain factorizations and backsolves to extrapolate roughly 
linearly in the number of processors for the same discrete size tiles. 

FORTRAN77 and C compilers for the iPSC/860 are regarded as immature at present. We used 
the Greenhills compilers with optimizations -0LM - 2618. We compared FORTRAN77 and 
C versions of the most compute-intensive kernels on a model 10 x LO tile and selected the fastest of 
each, which was usually the C version. (The parallel skeleton of the code is entirely in C, but some 
modules executing sequentially within a processor are in FORTRAN77.) We also tried the 
Portland Group compiler on our kernels and did not find it to be significantly better at the 
highest safe optimization level. We believe that there is little room for additional optimization of 
the arithmetic-processing rates relative to supplied hardware and software technology and 
therefore that the speed-ups do not suffer from any artificial inflation. Because we preserve local 
uniformity of the data structures, it should be possible to get higher performance from some 
kernels by making better use of the processor memory caches. The software currently available on 
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the systems to which we have access does not exploit this structure. We prefer to wait for compiler 
improvements rather than rewrite these kernels in i860 assembly language. 

We hope to benefit in the future from better support for global communication along with 
improved compilers. The GMRES solver relies heavily on global inner products (there are 
thousands of inner products in a typical execution), so improvements to this one communication- 
intensive operation will substantially improve the overall parallel efficiency of our code on typical 
elliptic systems. It is possible to group the inner products within a single GMRES ortho- 
gonalization phase in order to make the number of calls to the global reduction routine 
proportional to the iteration count rather than to its square in the naive implementation. This 
optimization has so far been implemented only for the case in which A and B are based on the 
same discretization. 

With an eye towards applications, we note that in the present code approximately 97% of the 
execution time is consumed in the linear algebra modules. This includes 83% of the time in the 
preconditioner, 5% of the time in the matrix-vector products and 9% of the time in GMRES 
apart from calls to form the action of A and B - ’ .  The preconditioner work breaks down in turn 
into 59% of the total time in backsolves and 24% in factorizations. The evaluation of the 
coefficients of the operators A and B and the computation of the non-linear residuals of the 
streamfunction-vorticity system accounts for only about 3% of the total execution time. In our 
experience with solving reacting flow problems with detailed models for the chemical kinetics and 
transport on serial computers, the non-linear residual and Jacobian evaluation phases of the 
calculations can themselves consume the dominant share of execution time. As models with more 
complex source terms and multicomponent transport laws are added to the present code, we 
expect improved parallel efficiencies, since the ratio of local operations to neighbour data 
exchanges is higher in such problems. 

5. CONCLUDING REMARKS 

As demonstrated by adaptively refined parallel computations of non-linear, non-self-adjoint, 
multicomponent model fluid flow problems, domain decomposition is maturing as a practical 
algorithmic paradigm for engineering applications. Among various types of divide-and-conquer 
algorithms, two-scale preconditioned domain decomposition is a natural compromise between 
the requirements of the problem physics, current parallel hardware and maintainable, portable 
software. However, much research remains to be performed before previously inaccessible 
computations, such as complex multidimensional convectiondiffusion-reaction systems, 
become quotidian. 

Theoretically, more guidance in the construction of general-purpose preconditioners is needed. 
Known optimal three-dimensional preconditioners for non-overlapping decompositions are very 
cumbersome to programme. In two dimensions further research is needed on interface pre- 
conditioners for multicomponent problems and on multilevel preconditioners to remove the 
burden of a ‘too fine’ coarse grid solve. 

From a parallel computing perspective the main unresolved issue in domain decomposition is 
the trade-off between good load balance and good data locality. This is common to many 
problems in parallel computation. An issue to be addressed in the future is mapping onto 
massively parallel computers consisting of MIMD clusters of SIMD arrays. The two-level tile 
algorithm seems ideally suited to such an architecture, as discussed briefly in Reference 1. 

Advances in automatic adaptive discretization techniques from the past decade2’ need to be 
incorporated into domain decomposition software. Building libraries of tiles is one convenient 
way to aid this effort in the context of the current algorithm. 
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Finally, as with any powerful solution algorithm, preconditioned domain decomposition 
iterative techniques need to be integrated into complete supercomputing environments in order 
to make testing on genuine engineering applications convenient. User-iteractive problem defini- 
tion, visualization and computational steering (particularly of non-linear problems) are needed. 
By relying less on global structure than many solution algorithms and providing much in the way 
of local structure to powerful nodes, domain decomposition is a natural algorithmic bridge 
between applications and architectures. 
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