
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 14, 147-165 (1992)

DOMAIN DECOMPOSITION METHODS IN
COMPUTATIONAL FLUID DYNAMICS

WILLIAM D. GROPP
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.

AND

DAVID E. KEYES
Department of Mechanical Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, U.S.A.

SUMMARY
The divide-and-conquer paradigm of iterative domain decomposition or substructuring has become a
practical tool in computational fluid dynamics applications because of its flexibility in accommodating
adaptive refinement through locally uniform (or quasi-uniform) grids, its ability to exploit multiple
discretizations of the operator equations, and the modular pathway it provides towards parallelism. We
illustrate these features on the classic model problem of flow over a backstep using Newton’s method as the
non-linear iteration. Multiple discretizations (second-order in the operator and first-order in the pre-
conditioner) and locally uniform mesh refinement pay dividends separately and can be combined syn-
ergistically. We include sample performance results from an Intel iPSC/860 hypercube implementation.

KEY WORDS Domain decomposition Computational fluid dynamics Preconditioned Krylov iteration
Newton’s method Locally uniform mesh refinement

1. INTRODUCTION

The literature of computational fluid dynamics (CFD) ranges from elegant analyses of model
systems to detailed analyses of realistic systems whose executions require hundreds of hours of
supercomputer time. Software generally migrates from the former problem class to the latter at
best slowly and not without performance penalties, because the source of elegance, efficiency or
optimality is often the exploitation of special structure that is absent in applications. Therefore
the gap in attainable computational performance on ideal and practical CFD problems has little
prospect of closing completely. Rather, since problems with less uniform structure usually are
harder to map efficiently onto multiprocessors, parallel computing would appear only to widen
the performance gap between the ideal and the real, while offering absolute improvements to
both.

The combination of domain decomposition with preconditioned iterative methods extends the
usefulness of numerical techniques for certain special partial differential equation problems to
those of more general structure. The domains of problems with features inhibiting the global
exploitation of optimal algorithms can often be decomposed into smaller subdomains of simpler
structure on which extant solvers serve as local components of a parallelizable global approxim-
ate inverse. The computational advantages are usually sufficient to allow for the iteration

027 1-209 1/92/020147-19$09.50
0 1992 by John Wiley & Sons, Ltd.

Received 5 February 1991
Revised 18 April 1991

148 W. D. GROPP AND D. E. KEYES

required to enforce consistency at the artificially introduced subdomain boundaries, often even
apart from parallelism. Size alone is often a sufficient advantage, since the computational
complexity of many solution algorithms is a superlinear function of the discrete dimension, and
thus p problems of size n / p may be solved more cheaply than one of size n.

Iterative methods based on choosing the best solution in incrementally expandable subspaces
allow the tailoring of computations to specified accuracy requirements. These methods can use
multiple representations of the same underlying operator, ultimately converging in terms of a
desired ‘high-quality’ representation through a series of applications of the inverse of a ‘lower-
quality’ representation, called a preconditioner, that is cheap or parallelizable or possesses some
other advantage. Although already useful in linear problems and on serial computers, the ability
to operate with multiple representations of the operator proves even more significant in non-
linear problems and in parallel. In non-linear problems, for instance, preconditioners for the
Jacobian can be amortized over many Newton steps, while the solution is advanced through
always up-to-date matrix-free approximations to Jacobian-vector products. In parallel, pre-
conditioners can be constructed whose action requires less data exchange than a higher-quality
representation would. One way to view domain decomposition is as a means of creating
parallelizable preconditioners for iterative methods. The iteration required to piece together the
solution at the artificial subdomain boundaries may be folded in with the iteration already
implicit in the multiple levels of operator representation and, ultimately, with an outer non-linear
iteration as well.

Domain decomposition is a natural basis for partitioning programmes across processors and
partitioning data across memories, and allows a natural integration of local refinement, including
refinements of mesh, of discretization order or even of operator and the representation of the
unknown fields. Although domain decomposition is as old as the analysis of engineering systems,
the past decade has provided a significant theoretical foundation for model problems, which has
in turn provided heuristics for others. An aspect of interest to us is the migration in problem
parameter space from the theoretically richly endowed ‘point’ of the linear, self-adjoint problem
for a scalar equation on a (quasi-) uniformly refined grid to the region of non-linear multicom-
ponent problems spawning a sequence of non-self-adjoint adaptively refined systems. Further-
more, we are interested in formulating such problems in a modular manner convenient to the
design and maintenance of parallel software. For reasons of flexibility and inertia in the modelling
of chemically reacting flows in particular, we are primarily-interested in finite difference or finite
volume discretizations, but without relying on first-order methods since they are almost never
competitive when the criterion is fewest operations for a given accuracy.

The philosophy of this paper has been set forth previously in References 1 and 2, where the
gains of local refinement and multiple-order discretization respectively were illustrated. The
backstep flow test problem with uniform mesh and discretization order was considered in
Reference 3, where it was shown that most of the portions of the code associated with the non-
linear and linear subtasks parallelize with comparable overhead. In this paper we show that the
confluence of these various tributaries leads to a conveniently programmed parallel implementa-
tion on medium-scale MIMD machines and we explore its parallel efficiency on one such
machine, the Intel iPSC/860. In the interest of brevity we omit many algorithmic details covered
in the references.

Section 2 describes a basic two-level algorithmic framework for implicitly discretized convec-
tion-diffusion systems. This is generalized in Section 3 to second-order adaptive refinements and
placed in the context of an overall Newton iteration. The numerical results of Section 4 display
the accuracy and parallel efficiency of some resulting combinations. We conclude in Section 5
with a consideration of future objectives.

DOMAIN DECOMPOSITION IN CFD 149

2. THE PHILOSOPHY O F ITERATIVE DOMAIN DECOMPOSITION

The domains of dependence of resolvents of elliptic operators, such as the spatial terms of the
momentum and energy equations of (subsonic) fluid mechanics, are global, though there is a
decay with the distance between the source and field points. The global dependence implies that
data must travel across the grid from each point to all others during the solution process (for the
satisfaction of sensible accuracy requirements). This requires a number of local data exchanges
approximately equal to the discrete diameter of the grid or, possibly, a smaller number of longer-
range exchanges derived from the use of multiple spatial scales. A length scale in between the
integral length scale of the domain and the fine mesh parameter occupies a central place in our
domain decomposition methodology. The intermediate scale need not directly determine the
granularity of the parallelization, but it is convenient to base the parallel mesh data structure
upon it.

2.1. Global data transport

'Classical' results quantifying the trade-offs between purely local and global data transport are
given in References 4 and 5. These papers show how preconditioned conjugate gradient iteration
may be used to obtain solutions to two-dimensional self-adjoint elliptic problems in a number of
iterations at most weakly dependent on the fine grid resolution through the logarithm of the ratio
of the diameter of subdomains into which the global domain is divided, H, to the mesh parameter
h (see Figure 1). The cost in each case is the iterated solution of a subdomain vertex problem
equivalent to a coarse discretization of the original operator with the subdomains as elements,
along with the solution of the independent problems on the subdomains themselves (and on the
one-dimensional interfaces in the case of non-overlapping subdomains). Thus the preconditioner
is two-scale and requires regular non-nearest-neighbour exchanges. For the preconditioner to be
cost-effective, the non-local work should be subdominant. Practically, this requirement imposes a
minimum H / h ratio. If the subdomain vertex solve in the preconditioner is replaced with a simple
diagonal scaling, which removes the requirement of non-nearest-neighbour data exchanges, the
bound on the iteration count rises in proportion to the number of subdomains on a side, O(l/H).
If the vertex solve is retained and instead the subdomain solves are replaced with a simple
diagonal scaling, the bound on the iteration count rises in proportion to the number of
subintervals on a subdomain side, O(H/h) . Finally, in the presence of simple diagonal pre-

1
3-l

H

Figure 1. Schematic diagram showing length scales of discretization, h, and decomposition, H

150 W. D. GROPP AND D. E. KEYES

conditioning only (no vertex solve and no subdomain solves), it is a classical result for elliptic
problems that the conjugate gradient iteration count rises in proportion to the number of
subintervals on a side, O(l/h). The trade-off between the amount of work done in the pre-
conditioner and the total number of iterations is thus well characterized asymptotically.

The results for two-scale preconditioned self-adjoint problems have been extended in Re-
ferences 6-8 to non-self-adjoint problems. Conjugate gradient iteration is replaced with the
generalized minimum residual (GMRES) method and the bounds generally worsen by one or
more powers of the factor 1 +log(H/h). It is required in currently available convergence proofs
that the coarse grid be sufficiently fine; in particular, a subdomain Reynolds number must be
bounded. (Some convergence proofs for multigrid on non-self-adjoint problems avail themselves
of a similar restriction.) Predecessors of the theoretically characterized non-self-adjoint form of
the algorithm have been described for a scalar partial differential equation in References 1 and 9.
These algorithms require more iterations of cheaper preconditioners and are roughly as effective
(measured in execution time) as those possessing optimal convergence rates until H and h take on
rather small values.

Whether the subdomains are assigned indivisibly to processors (as in our current codes) or
whether the uniform tasks they represent are further subdivided in SIMD fashion, two-scale
preconditioners significantly alleviate the sequential bottlenecks of global preconditioners such as
incomplete factorizations. However, truly massive parallelism may require yet richer hierarchies
of scales.

2.2. Preconditioned Krylov iteration

Our domain-decomposed preconditioners are used in conjunction with the Krylov iterative
method GMRES, described algorithmically in Reference 10 and analysed theoretically in
References 11 and 12 (in the equivalent form of the generalized conjugate residual method). Each
iteration of GMRES involves a matrix-vector product requiring local data exchanges only and
the preconditioner solve, in addition to some inner products. GMRES converges in a number of
iterations proportional to the number of distinct clusters of one or more eigenvalues of the
preconditioned operator. Loosely speaking, the greater the accuracy required or the closer the
cluster to the origin, the smaller is the tolerance on what constitutes a single ‘cluster’. Efficient use
of GMRES in elliptic problems generally requires preconditioning to produce clustering. The
appeal of GMRES is that it is robust and requires no user-estimated parameters. However, other
iterative methods potentially requiring fewer inner products and smaller memory could be used
instead; we mention the GMRES-Richardson hybrids in References 13 and 14 and the
Bi-CGSTAB method in Reference 15 among contemporary candidates.

We summarize this section by establishing notation. A general framework for iterative domain
decomposition methods for solving linearized elliptic systems consists of a global discrete
operator A, a global approximate inverse B - ’ , an iterative method requiring only the action of
A and B - I , and a geometry-based, contiguity-preserving partition of unknowns inducing a block
structure on A and B.

We denote all subdomain vertices ‘cross-points’. Ordering the interior points first, the inter-
faces connecting the cross-points next and the cross-points last imposes the following outer tri-
partition on the global discrete operator A:

DOMAIN DECOMPOSITION IN CFD 151

Note that the partitions vary greatly in size. If N is a quasi-uniform subdomain diameter and h
quasi-uniform fine mesh width, the discrete dimensions of A, , A , and A, are 8 (K 2) , CO(H-'h-')
and cO(H-2) respectively.

The structure of our preconditioner B is closely related to a conformally partitioned matrix

consisting of the block upper triangle of A, except for the replacement of A , with an H-scale
discretization of the original operator on the vertices, B,, and the replacement of A , with an
h-scale discretization of the original operator along the interfaces of the decomposition with the
normal derivative terms discarded, B,. (See Reference 16 for some numerical tests of this interface
preconditioner.)

The application of B- ' to a vector u = (u I , u,, u ,) ~ consists of solving Bw=u for
w=(wI , w,, w,)'. It begins with a cross-point solve with B, for w,. This updates the right-hand
sides of a set of independent interface solves for subvectors of w B through A,, and the right-hand
sides of a set of independent interior solves for subvectors of wI through AIc. The interface solves,
in turn, further update the right-hand sides of w, through A,,. Finally, the subdomain solves are
performed. Note that the solves for w, and w, provide 19(H-~)-scale parallelism.

There is no dependence within the preconditioner of the cross-point or interface solutions upon
the result of the interior solutions. This distinguishes the method from References 4 and 7 and
means that the O(h-')-sized block of the preconditioner is visited only once per iteration.
However, an important variation of the preconditioner exists which represents a compromise
between the strictly block triangular algorithm above and the cited methods. Following Refer-
ence 4, we have found it advantageous to replace the right-hand-side values uc with weighted
averages of the right-hand sides along adjacent interfaces before solving the cross-point system.
This approach incorporates some lower triangle coupling without any additional solves (see
Reference 1 for a detailed matrix interpretation).

3. PRACTICAL DOMAIN DECOMPOSITION ALGORITHMS FOR CFD

In the present contribution we merge four tributaries of our recent work: (1) local uniform mesh
refinement, (2) use of a pair (A , B) in which B is of lower order (defect correction), (3) non-linear
solvers and (4) implementation on parallel processors.

3.1. Locally uniform mesh refinement

In many cases the problems generating the discrete systems to be solved by domain decomposi-
tion have several different physical length scales. Since the polynomial approximations under-
lying local finite discretization methods are length-scale-specific in their validity, mesh refinement
(perhaps in combination with refinement of discretization order) is often used to produce an
accurate solution. Locally uniform mesh refinement' is an adaptive resolution technique that is
well suited to domain decomposition. By it, rectangular subdomains are refined with locally
computationally regular tensor product meshes. This refinement permits easy and efficient
vectorization and allows consideration of fast solvers as components of domain-decomposed
preconditioners. Different subdomains may have different mesh refinement, but the refinement is
of a uniform scale within a single subdomain. This regularity allows a concisely expressed and
flexible algorithm. Changes in grid refinement at interfaces between subdomains are accommod-

152 W. D. GROPP AND D. E, KEYES

ated with mutually overlapping phantom points and biquadratic interpolation. The phantom
points allow the use of conventional finite difference techniques (for second-order differential
operators) in generating the difference equations at the subdomain interfaces. The selection of
general refinement criteria is well examined in the literature (see e.g. Reference 17 for a recent
review) and beyond the scope of the present contribution. In the specific example presented
below, a sufficient refinement strategy is suggested by the known location of the vorticity
singularity and confirmed by the ability to accurately reproduce known results. Much more
efficient refinement strategies exist and we plan to incorporate them in a self-adaptive way in the
future.

In Reference 1 the classic problem of Poisson’s equation in an L-shaped domain was used to
illustrate the memory and execution time savings allowed by subdomain-based local mesh
refinement over global refinement, without sacrifice of accuracy. For an effective resolution of
hW1=128, for instance, a reduction factor of just over six in execution time accompanied a
reduction factor of just over five in the number of unknowns required to represent the solution.
Empirical observation of iteration counts in the globally and locally refined cases suggests that it
is the finest mesh spacing, not the number of unknowns per se, that determines the convergence
rate in variably refined domain decomposition algorithms. Although the theory developed for
quasi-uniform grids cited in Section 2.1 is not directly applicable to our tests, the results of the
tests and the theoretical estimates are consistent if the maximum H/h, i.e. the discrete dimension
of the finest tile, is employed in the latter.

Figure 2 illustrates how the locally uniform refinement technique is applied to the L-shaped
backstep flow problem.

3.2. Accelerated defect correction

A conventional defect correction method for solving the system of equations

N (u) = 0, (3)
where N depends continuously on u, is as follows. We suppose that we can easily solve a related
problem

N(u)=J:

N (l l O) = O

Then we initialize u by solving

Figure 2. Schematic diagram of a composite grid for the backstep flow problem, with well-developed inflow (left) and
outflow (right) velocity profiles superposed. The upper and lower surfaces are rigid walls. Refinement is employed near the
step and in the recirculation region (The composite grids actually used to generate the data in the following section are

finer than shown here.)

DOMAIN DECOMPOSITION IN CFD 153

and iterate

N (u k + I) = N (u k) - N (uk).

If the iterations converge, they converge to a solution of (3). In our context, N is simply a lower-
order discretization of N .

For linear N (u) this stationary defect correction can be accelerated by using the discretization
N as the basis for a domain-decomposed preconditioner B for A = N . In Reference 2 we found an
accelerated version of defect correction to be useful in maintaining second-order accuracy in a
CFD finite difference discretization while employing only more convenient first-order upwind
differencing for the convective terms in the preconditioner. Full second-order-in-h truncation
error convergence was observed for smooth problems. Two types of measurements were made to
quantify the performance of this algorithm. For a fixed h the number of iterations required for
algebraic convergence of the preconditioned GMRES method was compared with a case in which
A and B were based on the same first-order upwind discretization. The method with second-order
A required more iterations, but never more than 1.5 times as many. In terms of the execution time
required to achieve a fixed truncation error, the method with second-order A was an order of
magnitude more efficient because of its sparser grid.

3.3. Newton's method

For the solution of steady reacting flow problems, robust variations of Newton's method, assisted
as necessary by parameter continuation, are often preferable to less fully coupled iterative
methods or associated explicit time-marching methods (see e.g. Reference 18). We regard the
current work as a prelude to building reacting flow codes for MIMD parallel architectures; thus it
is natural to focus on Newton methods.

We write the overall system in the form

F(4)=O, (4)

where 4 represents a column vector of all of the unknowns. Equation (4) may be solved efficiently
by a damped modified Newton method provided that an initial iterate 4 (O) sufficiently close to the
solution 4* is supplied. The damped modified Newton iteration is given by

4 (k + 1) = 4 (~) + ~ (f) S 4 (k) , (5)

the matrix J"(') being an approximation to the actual Jacobian matrix evaluated at the kth iterate.
We refer to as the kth update. When A (k) = 1 and J"(k)=J(k)=(@k)) aF/a+ for all k, a pure
Newton method is obtained. The iteration terminates when some (scaled) two-norm of
drops below a given tolerance. In well-conditioned systems this will of course also be true of the
norm of F(4ck)) .

From the discussion of equations (5) and (6) we identify the five basic tasks that together
account for almost all of the execution time required by the Newton algorithm: (1) DAXPY
vector arithmetic, (2) the evaluation of residual vectors, (3) the evaluation of Jacobians, (4) the
evaluation of norms and (5) the solution of linear equations involving the Jacobian matrix. The
DAXPY requires no data exchanges between neighbouring points. The residual and Jacobian
evaluations (performed analytically here) require only nearest-neighbour data exchanges. The
evaluation of norms and the linear system solution require global data exchanges and are hence

154 W. D. GROPP AND D. E. KEYES

the focus of a parallel implementation. In a general-purpose Newton algorithm, significant
amounts of code must be written beyond the steps listed here. Automating the continuation,
damping and Jacobian re-evaluation strategies can greatly affect the efficiency of a Newton
method. However, these essential additional tasks require insignificant amounts of computational
work not already in the five categories above.

3.4. Parallel implementation

Preceding sections have described a convenient domain-based clustering of work into ‘tiles’
while flagging the phases of the overall algorithm that require inter-tile data exchanges. A parallel
implementation follows directly, except for decisions regarding the solution of the global coarse
grid problem, for which the best algorithm is architecture- and problem-dependent. Many details
of serial, parallel shared memory and parallel distributed memory domain decomposition
algorithms for linear problems have been given in References 9 and 19. It is interesting that ‘good’
algorithms for all three computing environments can share over 95% of the code in common.

Work arrays for the data structures associated with each tile are allocated individually to
available processors according to heuristic load balance criteria, without priority concern for
proximity in the processor network of processes associated with neighbouring subdomains.
(Users of domain decomposition algorithms on earlier Intel hypercubes concluded that the
penalty for failing to preserve nearest-neighbour connections in subdomain-to-processor map-
pings is at most 20% in total run time.” This is non-negligible, but worst-case load imbalance
penalties when nearest-neighbour connections are slavishly preserved can be arbitrarily higher.
Mapping algorithms simultaneously satisfying good load balance and good subdomain-
processor locality constitute an ongoing research effort. From a practical point of view a
cost-benefit analysis of the mapping algorithm itself must be taken into consideration. For
representative pointers into this literature, References 21 and 22 may be consulted. A buffer is
maintained around the perimeter of each tile of a width corresponding to the semibandwidth of
the difference stencil in use of that tile. These buffers are refreshed by interpolation from
neighbouring tile interiors at appropriate synchronization points.

Generally, individual processors are responsible for multiple subdomains, and tiles assigned to
the same processor are processed sequentially within each synchronized phase of the algorithm.
Optimizations have been incorporated into the parallel code to packetize data exchanges between
the same processors resulting from different tile-tile interfaces. On a machine where inter-
processor communication is relatively expensive, such as the iPSC/860, message buffering is
potentially valuable, but more attention to the tile-processor mapping is required to fully exploit
it. The major uses of the freedom of MIMD (as opposed to SIMD) programming are in the
variable resolution of tiles (for adaptive discretization), the variable number of tiles per processor
(for load balance) and the enforcement of boundary conditions. Boundary conditions are often a
bugbear of parallel programming, but we must recognize them only in the preconditioner and
only in an approximate manner. This is because local boundary conditions of any mathematically
reasonable type can be cast in the form of matrix-vector products with the operator A.

It is typically uninviting to solve the relatively small preconditioner coarse grid problem
defined by the tile vertices, a sparse linear system, in a distributed fashion. There is too little
arithmetic work per processor at modest tile-to-processor ratios. Neither is it optimal to gather
the distributed right-hand-side data for this problem onto a single processor, solve it sequentially
while the other processors wait, and scatter the result back. The communication time of the latter
approach can be cut roughly in half by broadcasting the right-hand-side data to all processors
and solving redundantly on each. The redundant coarse grid solution is used in generating the
parallel performance data given below.

DOMAIN DECOMPOSITION IN CFD 155

A different technique, called the ‘asynchronous cross-point solve’, allows the inversion of the
diagonal blocks of B, and A, in the preconditioner to begin before the coarse grid solution has
been completed. Since the result of the preconditioner solve is linear in the components of the
right-hand side, it is possible to compute in a preprocessing step the discrete Green functions
associated with each vertex. Storing these Green functions requires four extra vectors of the
dimension of the number of unknowns in the discretization for each unknown field in the system
of governing PDEs. (Thus, for example, a two-component streamfunction-vorticity system
requires eight extra vectors of size 2N, where the composite grid consists of N points). After the
coarse grid solve is completed, its high communication requirements overlapped with the bulk of
the preconditioner solve, the proper components of the vertex Green functions can be added in.
The vertex Green functions would generally have to be recomputed each time the Jacobian was
re-evaluated, at the cost of four sets of subdomain solves. The optimal trade-off between the
potentially inhomogeneous workload and extra preprocessing and storage of the Green function
method versus the parallel inefficiency of solving the vertex problem is both architecture- and
problem-specific and has not been pursued in the current code.

4. FLOW OVER A BACKSTEP

We illustrate the capabilities of the non-linear domain-decomposed solver on a classic model
problem from computational fluid dynamics, the flow over a backstep, studying both solution
accuracy as a function of discretization and parallel performance as a function of refinement and
processor granularity.

Although it is a favourite demonstration problem, there is no single canonical backstep flow
configuration in the literature. The principal variations lie in the choice of symmetric channel
geometry or a flat wall opposite the step, in the characterization (plug flow, fully developed or
experimentally measured) of the upstream boundary conditions, in the ratio of step height to
channel width and in the smoothness of the step itself. For present purposes we fix these choices
as a flat opposite wall, a fully developed inlet profile (located two step heights upstream) and a
channel expansion ratio of two to three occurring abruptly at the step (see Figure 2).

Inasmuch as the flow is well characterized as laminar, steady and two-dimensional in the
Reynolds number range we model, we use the streamfunction-vorticity formulation of the
incompressible Navier-Stokes equations, in which velocity components (u, v) are replaced with
($, w) through

(7)
au aU

aY ’ ax’ ay ax*
u=- a* v=-- w w=---

The streamfunction satisfies the Poisson equation

- VZ * -I- w =o, (8)
and the vorticity the convection4iffusion equation

Re u-+v- -V2w=0 . (E :) (9)

This system is non-dimensionalized with the step height as the reference length and the
centreline inlet velocity as the reference velocity. (Some authors employ the mean inlet velocity in
non-dimensionalizing. Their Reynolds number Re is thus two-thirds the size we report for the
equivalent flow configuration.)

156 W. D. GROPP AND D. E. KEYES

We observe that (apart from boundary conditions) the Jacobian of this system has the form

in which matrices C , and C, approach zero with the Reynolds number. If convenient boundary
conditions could be specified for the vorticity, a good preconditioner for this system could
comprise a pair of fast Poisson solvers, but this condition is typically not met in practice.

The boundary conditions employed in the numerical tests are specified with reference to
the domain in Figure 2. The inlet streamfunction and vorticity are derived from integration
and differentiation respectively of the assumed well-developed upstream velocity profile
u(0, y) =y(2 - y) and u(0, y) = 0. ($ is referenced to zero at the origin of co-ordinates.) Along the
fixed, impenetrable, no-slip upper and lower walls $ is constant; hence all its tangential
derivatives are zero. Through equation (8), o is thus set equal to - a Z $ / a n 2 , where n is the unit
normal, chosen in the vertical by default at the degenerate corner of the step. (Numerical
experiments with alternative choicesz3 did not suggest an obvious preferred way of breaking this
degeneracy, the mathematical artefact of an infinitely sharp step, and it is evident in the results
that our arbitrary choice is not limiting as regards the phenomena of interest.) Finally, along the
outflow boundary we used extrapolation conditions a$/& = 0 and a2$/ax2 = 0. These conditions
were accuracy-limiting at sufficiently large Reynolds number in a straightforwardly removable
way, as described below.

We employed a variety of discretizations at seven Reynolds numbers spanning the range from
50 to 200 in increments of 25. We ran the full set of problems on a Sparcstation-1, then ran a
subset of problems at Reynolds number 100 on the Intel iPSC/860, varying the number of
processors employed from the smallest number containing sufficient aggregate memory up to the
maximum available (32) in order to evaluate performance. We employed zeroth-order continua-
tion to shorten the time required to sweep through Reynolds number space; that is, we used the
solution at the next lower Reynolds number as a starting estimate at the current one, beginning
with the case (Re = 50) in which the non-linear influence is the smallest. Continuation is often
employed in non-linear solvers for robustness, but in this Reynolds range we employed it only for
convenience. In no case did the Newton algorithm suffer convergence difficulty in starting from
‘cold’ estimates obtained either by extrapolating the inlet flow unchanged downstream and
patching it to an initially stagnant region behind the step or by assuming the entire domain to be
stagnant.

A sample solution at Re= 100 is contoured in Figure 3. The dividing streamfunction contour
lies slightly below the top of the step, towards which it climbs from a pure Stokes (Re=O)
solution, reproducing a known feature of this flow field. The centre of the channel is vorticity-free.
The vorticity is high on either side of the channel just upstream of the step, and the highest
vorticities occur in the neighbourhood of the step itself, where it is undefined. It is evident from
the figure that the flow returns to an almost symmetrical shape following the asymmetrical
expansion, thought the exit profile has not yet achieved its asymptotic parabolic profile only eight
step heights downstream.

4.1. Solution accuracy

Since no exact solutions of the backstep flow problem are available, we rely on comparisons of
functionals of the solution obtained previously by other investigators in evaluating the accuracy
of our numerical solutions. Four such scalar functionals are the length of the recirculation zone
(as defined by the reattachment point of the dividing streamfunction contour), the strength of the

DOMAIN DECOMPOSITION IN CFD 157

Figure 3. Contour plots of streamfunction and vorticity for Re= 100 flow over a backstep (In the display orientation the
flow is from bottom to top and the true aspect ratio is distorted, allowing more detail in the transverse direction.)

recirculation (as defined by the maximum magnitude of the streamfunction in the recirculation
region) and the downstream and transverse co-ordinates of the point at which the maximum
magnitude of the streamfunction is achieved.

For Reynolds numbers in the range investigated (5&200), the length of the recirculation zone is
well approximated as a linear function of Re. (See Reference 24, which discusses a similar study
with the spectral element method and supplies references to earlier experimental and numerical
investigations.) We adopt the notation L, for this length (measured in step heights) and show in
Figure 4 previously obtained results for L, versus Re along with results of our domain
decomposition code. The spectral results of Reference 24 and the (evidently highly resolved) finite
difference results of Reference 25 on domains sufficiently extended in the downstream direction
fall very tightly around the dashed line connecting Re = 50, L, = 2.87 with Re = 200, L, = 8-18. (At
higher Reynolds numbers the time-averaged reattachment length is known to slow as a function
of Re, achieve a maximum and eventually retreat part way upstream, though this behaviour
occurs in the turbulent regime.) Note that the reattachment point at Re = 200 lies a bit beyond the
edge (dashed cut-off) of the domain of Figure 2. Because an accurate L, is unmeasurable in this
case, some data points are missing at Re=200. The two data points shown at Re=200
correspond to discretizations that are artificially diffusive enough to severely shrink the recircul-
ation zone. The close approach of L, to the boundary at Re= 175 allows one to show the manner
in which the extrapolative downstream boundary condition fails by pulling the tail of the

158 W. D. GROPP AND D. E. KEYES

10
m
4

0 A
50

X X

2
0

0
0

u
100 150 200 250

Reynolds Nurber

Figure 4. Reattachment length versus Reynolds number for six different combinations of mesh refinement and discret-
ization order for the backstep flow problem

recirculation zone out of the domain. The less artificially diffusive the discretization, the greater is
the effect of the outflow boundary condition on L,.

As listed in the key to Figure 4, first- and second-order upwinding are combined with
resolutions of 10 grid points per unit length (base) and twice and thrice this resolution in refined
regions near and downstream of the step. It is observed that switching from first- to second-order
discretization is more effective than adaptive h-type refinement and that a combination of second-
order and modest refinement achieves nearly full accuracy for the Reynolds numbers considered.
Using accepted values of the reattachment length at various Reynolds numbers to define errors,
the first-order discretizations plainly yield first-order convergence whereas the second-order
discretizations yield superlinear convergence, full quadratic convergence being difficult to
measure with just three points.

The maximum magnitude of the streamfunction in the recirculation zone normalized by the
difference in streamfunction across the entire channel, lA$ Jmax/$O, is known to approach from
below a value of approximately 2% as the Reynolds number increases through our range of
interest. The broken line in Figure 5 closely fits the data of Reference 24 in the range shown and
the markers show how the values of recirculation strength are approached under the same set of
six discretization combinations tested above. For this rather sensitive functional, doubling the
resolution is more effective than doubling the order relative to the crudest approximation. The
fundamental problem of upwind differencing in the presence of recirculation is discussed in
Reference 26 and references cited therein. Fortunately, recirculation occurs in flow regions where
the Reynolds number based on the local velocity is small in typical applications. In such regions,
second-order central differencing in A poses no problems for the upwind-preconditioned system'
and the local discretization can be adaptively switched. However, this adaptive switching is not
yet incorporated.

Throughout the middle of the Reynolds number range, the downstream co-ordinate of the
point of maximum recirculation streamfunction relative to the edge of the step and normalized by
the overall recirculation zone length, Axm/L,, is 0.3 f0.01. The corresponding transverse co-
ordinate Aym is 04+0.03 step heights, nearly independent of Re. These are both in close
agreement with earlier numerical and experimental results.

DOMAIN DECOMPOSITION IN CFD

1 1 1 1 ~ 1 1 1 1 ~ 1 1 1 , ~ 1 1 1 1 I l l 1

- -

- x x x -

0
X - -

X F i r s t - o r d e r , h=1/10 + F i r s t - o r d e r , h=1/20
+# F i r s t - o r d e r , h=1/30
0 Second-order. h=1/10
0 Second-order . h=1/20
0 Qecond-order. h=1/30

-

I I I I I l l 1 1 1 1 1 S p e c t r a l (P a t p r a . 1984)
_ _ _ _

159

2 0 . 0 2

i

g o . 0 1

Ei .-
W

2

0 .00

Reynolds N d e r

Figure 5. Maximum normalized recirculation streamfunction versus Reynolds number for six different combinations of
mesh refinement and discretization order for the backstep flow problem

From the graphs it is clear that a first-order upwind method is an inefficient means of obtaining
accurate solutions as the Reynolds number increases, but that it nevertheless makes convenient
preconditioner for a higher- (here second-) order upwind operator. These conclusions are not
new; the novel aspect of this work is the modular manner in which the composite grid
preconditioned operator is constructed, which leads to convenient local refinement and
parallelism. The selection of which tiles to refine and how much to refine them was crudely guided
by knowledge of the problem but is clearly amenable to finer tuning through automatic error
estimation. Perhaps the worst aspect of the performance of the less accurate methods is that they
fail to detect that the domain is too short at the highest Reynolds numbers tested because of their
artificially high diffusivity. Complaints that heavily upwinded discretizations conceal their own
errors are common in the literature and are among the strongest incentives for building
modular software that makes checking alternative discretizations and refinements feasible and
convenient.

Counting streamfunction and vorticity values separately, there are 5862 degrees of freedom in
the base grid, 10422 in the intermediate and 21 702 in the most refined problem. We emphasize
that these are far from competitive refinements for tile-based finite difference discretizations, since
the streamwise direction is very overresolved relative to the transverse when grid elements are
squares as here. Non-isotropic tessellations and non-isotropic refinement of individual tiles are
clearly possibilities that fit comfortably within the tile framework. The data above serve only to
show how refining locally and changing the operator order may be done without sacrificing
regularity in the implicit portions of the computation. Although not obtained on optimal
discretizations, the data make positive statements about the discrete solution process. For
convective4iffusive problems in which geometrical complexities in the boundary and the
distribution of sources or sinks require large numbers of unknowns, the fully implicit, fully non-
linear iterative solver performs robustly.

4.2. Convergence behaviour

the numerical experiments reported here.
We comment briefly on several aspects of the non-linear and linear algebraic convergence in

160 W. D. GROPP AND D. E. KEYES

The effectiveness of the continuation procedure can be communicated by means of a typical
example from the ‘middle’ of the physical and numerical parameter space explored in this study.
We consider the Re = 100 flow with a second-order upwind operator and one level of refinement
from a base grid consisting of two tiles per unit length (the step height) and five mesh intervals per
tile, resulting in an effective h-’ of 20 in the refined regions. The following timings are quoted
from a Sparcstation-1. From a ‘cold’ start with an initial non-linear residual Euclidean norm of
2-13 x 10, four Newton steps were required to drop the final residual to 9.96 x These four
Newton steps required a total of 132 preconditioned GMRES iterations (with a different first-
order upwind domain-decomposed preconditioner for each of the four sets) and a total of 229 s
of CPU time. From a ‘warm’ start consisting of the converged solution to the problem at
Re = 75 and an initial non-linear residual Euclidean norm of only 4.25 x 10- ’, three Newton steps
brought the final residual to a comparable 9.36 x The last Newton step required only one
preconditioned GMRES iteration, thus the construction of the preconditioner for the third stage
was largely unamortized effort; nevertheless, the totals of 63 GMRES iterations and 103 s of CPU
time represented a little less than half the effort of the ‘cold’ start case.

The relatively modest relative reductions in non-linear residual (O(lo3)) at which convergence
was declared were sufficient to bring out the full truncation error potentials of the discretizations
employed. To evaluate this, we ran a second ‘cold’ case until the final non-linear residual was
9.85 + or three additional orders of magnitude. This required three additional Newton steps,
for a total of seven, and totals of 254 preconditioned GMRES iterations and 463 CPU seconds.
No differences were observed in any of the functionals plotted in the previous subsection. Thus
the nearly doubled numbers of GMRES steps and CPU cycles were unnecessary from a ‘bottom-
line’ viewpoint.

As can be gathered from the comparison of the just-cited ‘cold’ runs terminated at different
stages, we observe a Newton convergence (as monitored by the residual, since the exact solution is
not known) which is closer to linear than to quadratic. It is difficult to estimate how much of the
convergence history is spent in the domain of quadratic convergence of Newton’s method in these
problems, but we do not expect to see full quadratic convergence because we employ an inexact
Newton method; that is, we tune the convergence of the linear system solves at each Newton step
to the outer progress, with a mixed relative-absolute tolerance. Further experimentation may
yield better couplings of inner to outer iterations for this class of problem, but for the precision
with which we report relevant functionals of the overall solution in this investigation the
asymptotic convergence rate of Newton’s method is not a crucial feature.

We noticed two interesting couplings of the convergence progress of the backstep problem to
the discretization technique. Considering first the discretization order, we found that the first-
order discretization required more Newton steps of fewer GMRES iterations each than the
second-order discretization on the same grid to achieve a given level of non-linear residual
reduction. Rather than four Newton steps comprising 132 GMRES iterations in the short ‘cold’
start case discussed above, a first-order discretization of the same problem required six Newton
steps comprising a total of 123 GMRES iterations. The final non-linear algebraic residual was a
comparable 9.78 x and the CPU time required was only 149 s instead of 229 s. Since the
approximation to the underlying differential equation was demonstrably superior for the second-
order discretization, the extra 54% of CPU cycles was well worth it, but the difference in algebraic
behaviour of the two discretizations is interesting to note. It suggests the hypothesis that a push to
higher-order upwind discretizations would eventually be defeated by the rising cost of solving the
resulting discrete equations. The cross-over point remains to be determined and should be
evaluated on the basis of CPU time for a given solution accuracy.

Another interesting coupling of the convergence progress to the discretization concerned the

DOMAIN DECOMPOSITION IN CFD 161

grid density. For a given discretization order the same 'cold' start Re = 100 problem was run at
globally ungorrn resolutions of h- ' = 10,20 and 40. The largest of these problems required 90 642
degrees of freedom for its representation. For our cold start the first Newton step is based on a
flow field containing no vorticity singularities and is discussed as a special case immediately
below. Immediately following Newton steps required substantially more GMRES steps than the
first one at all grid densities. However, the effect was more pronounced at the higher grid
densities. Thus the h-' = 10 case jumped from eight to 31 GMRES iterations between Newton
iterations 1 and 2, the h-' = 20 case from 11 to 51 GMRES iterations and the h-' =40 case from
14 to 79 iterations. Since it is not practical to store Krylov subspaces of such high degree for such
large problems, we were forced to use restarted GMRES in these tests, which requires more
iterations than a full GMRES. We used a maximum Krylov dimension of 40. Newton steps
subsequent to the second generally required successively fewer GMRES steps, tapering to fairly
small numbers in the last outer iteration. A practical implication from this study is that highly
resolved flow computations should be approached through a sequence of grids ranging from
coarse to fine, so that much of the numerical shock of vorticity singularities can be distributed at
coarser scales and subsequently refined. This practice is of course fundamental to the FMV form
of multigrid and can be recommended on theoretical and practical grounds in the context of the
solution of BVPs by Newton's method; see e.g. Reference 28.

Finally, we note in the preceding paragraph the logarithmic growth in h-' of the number of
GMRES iterations required in the first Newton step. Each doubling of the mesh density h - (with
the same underlying tessellation) resulted in a constant increase of three in the number of
iterations required. This follows the theory for the scalar equation summarized in Section 2.1.

With the exception of the discussion of linear problems in the last paragraph (addressed in a
larger context in Reference I), these remarks must be regarded as specific to the flow configura-
tion studied. We expect, however, that they provide useful rules of thumb for domain-decom-
posed iterations for non-linear elliptic BVPs and we plan to ascertain their generality in a variety
of cold and reacting flow configurations in subsequent reports.

4.3. Parallel performance

We conclude this section with Table I showing performance curves for the tile algorithm on the
Intel iPSC/860. Because parallel efficiency is crucially dependent upon arithmetic task and
processor granularity and load balance, we investigate power-of-two sequences of problem and
processor array sizes. Because typical problems are too large to fit on a single processor, we
cannot report overall speed-ups, but report relative speed-ups with each doubling of processor
array size.

Traversing columns, we observe the typical degradation in speed-up as processors are added at
a fixed problem size. Traversing rows, we observe the typical improvement in speed-up as the
problem size is increased at a fixed processor force. Going down the main diagonal, we note that
parallel performance is maintained when processor and problem sizes are scaled in proportion.
(An exception occurs in the last row (p=32), where systematic load imbalances occur because
p does not evenly divide the number of tiles for the first time in the table; thus half the nodes have
three tiles and the other half have four.) However, we note that overall execution time is not likely
to be optimized by indefinite increases in the effective h-' at fixed tessellation; a more complete
study would include several (p , h-')-planes like Table I at different H-'. The subdomain
factorization complexities currently contain terms cubic in h- and, similarly, the cross-point
factorization complexities contain terms cubic in H - '. These leading terms should be balanced
against one another or the modules contributing them should be replaced with, for instance,

162 W. D. GROPP AND D. E. KEYES

Table I. Total execution time T(in seconds) and relative speed-up s over a range of numbers of
processors, p , of the Intel iPSC/860 for five different discretizations of the backstep flow
problem at Re = 100, solved by using Newton's method. All data are for a fixed tessellation of
112 tiles. Labels 'Global' and 'Local' refer to the span of the refined regions, N is the total
number of unknowns in the discrete system and I is the number of GMRES iterations required
in executing the first Newton step. Missing entries could not be computed because of memory
limitations in smaller clusters of processors. Perfect relative speed-ups between successive rows

would be 2.0

Global Local Global Local Global
N = 5862 N = 10422 N = 22 922 N = 40 742 N = 90 642

1 1 = 8 11=11 I , = 11 I,=13 11=14

P T S T S T S T s T
~~ ~~ ~~

- - - - - - - 2 16.3 -

4 10.2 1.60 172 -

8 6.3 1.62 10.1 1.70 20.6 -

- - _~. - -

- - -

16 4.3 1.47 6.4 1.58 11.7 1.76 29-9 - -

32 3.7 1.16 4 7 1.36 8.2 1.42 17-5 1.70 49.3

multigrid solves. Multigrid makes a particularly attractive solver for larger subdomain problems,
since the subdomains generally possess greater uniformity than the problem as a whole.

The table also affords a crude indication of the value of adaptive refinement. Comparing the
'Local' and 'Global' columns at the same he;,', we see memory and execution time savings of
factors of two or more for local refinement, with the memory savings allowing a smaller feasible
number of processors to solve the problem to the same he;:.

Although of dubious value in evaluating algorithms, raw performance data on the iPSC/860
may also be of interest. Our aggregate flop rate on 32 processors ranged from about 1.5 Mflops in
the cross-point solve phase to 126 Mflops in the parallelized matrix-vector products with the
operator A for the largest problem of over 90 000 unknowns. For this largest problem, 110 and
99 Mflops respectively were realized in doing the concurrent subdomain factorizations and
backsolves constituting the A; phase of the preconditioner application. Extrapolation of some
of these aggregate rates to larger clusters of processors and problem sizes is non-trivial because of
both external communication and internal memory hierarchies, but we would expect execution
rates for operations like the subdomain factorizations and backsolves to extrapolate roughly
linearly in the number of processors for the same discrete size tiles.

FORTRAN77 and C compilers for the iPSC/860 are regarded as immature at present. We used
the Greenhills compilers with optimizations -0LM - 2618. We compared FORTRAN77 and
C versions of the most compute-intensive kernels on a model 10 x LO tile and selected the fastest of
each, which was usually the C version. (The parallel skeleton of the code is entirely in C, but some
modules executing sequentially within a processor are in FORTRAN77.) We also tried the
Portland Group compiler on our kernels and did not find it to be significantly better at the
highest safe optimization level. We believe that there is little room for additional optimization of
the arithmetic-processing rates relative to supplied hardware and software technology and
therefore that the speed-ups do not suffer from any artificial inflation. Because we preserve local
uniformity of the data structures, it should be possible to get higher performance from some
kernels by making better use of the processor memory caches. The software currently available on

DOMAIN DECOMPOSITION IN CFD 163

the systems to which we have access does not exploit this structure. We prefer to wait for compiler
improvements rather than rewrite these kernels in i860 assembly language.

We hope to benefit in the future from better support for global communication along with
improved compilers. The GMRES solver relies heavily on global inner products (there are
thousands of inner products in a typical execution), so improvements to this one communication-
intensive operation will substantially improve the overall parallel efficiency of our code on typical
elliptic systems. It is possible to group the inner products within a single GMRES ortho-
gonalization phase in order to make the number of calls to the global reduction routine
proportional to the iteration count rather than to its square in the naive implementation. This
optimization has so far been implemented only for the case in which A and B are based on the
same discretization.

With an eye towards applications, we note that in the present code approximately 97% of the
execution time is consumed in the linear algebra modules. This includes 83% of the time in the
preconditioner, 5% of the time in the matrix-vector products and 9% of the time in GMRES
apart from calls to form the action of A and B - ’ . The preconditioner work breaks down in turn
into 59% of the total time in backsolves and 24% in factorizations. The evaluation of the
coefficients of the operators A and B and the computation of the non-linear residuals of the
streamfunction-vorticity system accounts for only about 3% of the total execution time. In our
experience with solving reacting flow problems with detailed models for the chemical kinetics and
transport on serial computers, the non-linear residual and Jacobian evaluation phases of the
calculations can themselves consume the dominant share of execution time. As models with more
complex source terms and multicomponent transport laws are added to the present code, we
expect improved parallel efficiencies, since the ratio of local operations to neighbour data
exchanges is higher in such problems.

5. CONCLUDING REMARKS

As demonstrated by adaptively refined parallel computations of non-linear, non-self-adjoint,
multicomponent model fluid flow problems, domain decomposition is maturing as a practical
algorithmic paradigm for engineering applications. Among various types of divide-and-conquer
algorithms, two-scale preconditioned domain decomposition is a natural compromise between
the requirements of the problem physics, current parallel hardware and maintainable, portable
software. However, much research remains to be performed before previously inaccessible
computations, such as complex multidimensional convectiondiffusion-reaction systems,
become quotidian.

Theoretically, more guidance in the construction of general-purpose preconditioners is needed.
Known optimal three-dimensional preconditioners for non-overlapping decompositions are very
cumbersome to programme. In two dimensions further research is needed on interface pre-
conditioners for multicomponent problems and on multilevel preconditioners to remove the
burden of a ‘too fine’ coarse grid solve.

From a parallel computing perspective the main unresolved issue in domain decomposition is
the trade-off between good load balance and good data locality. This is common to many
problems in parallel computation. An issue to be addressed in the future is mapping onto
massively parallel computers consisting of MIMD clusters of SIMD arrays. The two-level tile
algorithm seems ideally suited to such an architecture, as discussed briefly in Reference 1.

Advances in automatic adaptive discretization techniques from the past decade2’ need to be
incorporated into domain decomposition software. Building libraries of tiles is one convenient
way to aid this effort in the context of the current algorithm.

164 W. D. GROPP AND D. E. KEYES

Finally, as with any powerful solution algorithm, preconditioned domain decomposition
iterative techniques need to be integrated into complete supercomputing environments in order
to make testing on genuine engineering applications convenient. User-iteractive problem defini-
tion, visualization and computational steering (particularly of non-linear problems) are needed.
By relying less on global structure than many solution algorithms and providing much in the way
of local structure to powerful nodes, domain decomposition is a natural algorithmic bridge
between applications and architectures.

ACKNOWLEDGEMENTS

We are grateful for the opportunity to run on the Intel iPSC/860 hypercube at the Institute for
Computer Applications in Science and Engineering, NASA Langley Research Center. We thank
Thomas W. Crockett for his management of the resource and Director Robert G. Voigt for his
partial sponsorchip of this research. W.D.G. was supported in part by the Applied Mathematical
Sciences subprogram of the Office of Energy Research, US. Department of Energy under
Contract W-3 1-109-Eng-38. D.E.K. was supported in part by the NSF under contract ECS-
8957475, by the IBM Corporation and by the National Aeronautics and Space Administration
under NASA Contract NASI-18605 while the author was in residence at ICASE, NASA Langley
Research Center, Hampton, VA 23665.

REFERENCES

1. W. D. Gropp and D. E. Keyes, ‘Domain decomposition with local mesh refinement’, Institute for Computer
Applications in Science and Engineering, Technical Report 91-19, February 1991 (accepted for publication in SIAM J .
Sci. Stat. Comp.).

2. D. E. Keyes and W. D. Gropp, ‘Domain-decomposable preconditioners for second-order upwind discretizations of
multicomponent systems’, Mathematics and Computer Science Preprint MCS-P187-1090, Argonne National Laborat-
ory, October 1990 (in Fourth International Symposium on Domain Decomposition Methods for Partial Differential
Equations, R. Glowinski, Y. A. Kuznetsov, G. Meurant, J. Periaux and 0. B. Widlund (eds), SIAM, Philadelphia, PA,

3. W. D. Gropp and D. E. Keyes, ‘Parallel domain decomposition and the solution of nonlinear systems of equations’,
Mathematics and Computer Science Preprint MCS-P186-1090, Argonne National Laboratory, October 1990 (in
Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, R.
Glowinski, Y. A. Kuznetsov, G. Meurant, I. Ptriaux and 0. B. Widlund (eds), SIAM, Philadelphia, PA, 1991, pp.

4. J. H. Bramble, J. E. Pasciak and A. H. Schatz, ‘The construction of preconditioners for elliptic problems by
substructuring, I’, Math. Comput., 47, 103-134 (1986).

5. M. Dryja and 0. B. Widlund, ‘An additive variant of the Schwarz alternating method for the case of many subregions’,
N YU, Courant Institute T R 339, December 1987.

6. X.-C. Cai, ‘An additive Schwarz algorithm for nonselfadjoint elliptic equations’, in T. F. Chan, R. Glowinski, J.
Periaux and 0. B. Widlund (eds), Third Int. Symp. on Domain Decomposition Methods for Partial Diflerential
Equations, SIAM, Philadelphia, PA, 1990, pp. 232-244.

7. X.-C. Cai, W. D. Gropp and D. E. Keyes, ‘Convergence rate estimate for a domain decomposition method‘, Yale
University, Department of Computer Science, RR-827, October 1990.

8. X.-C. Cai and 0. B. Widlund, ‘Domain decomposition algorithms for indefinite elliptic problems’, N Y U , Courant
Institute TR 506, May 1990.

9. W. D. Gropp and D. E. Keyes, ‘Parallel performance of domain-decomposed preconditioned Krylov methods for
PDEs with adaptive refinement’, Yale Unioersity, Department ofcomputer Science, RR-773, March 1990 (accepted for
publication in SIAM J . Sci. Stat. Comp.).

10. Y. Saad and M. H. Schultz, ‘GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear
systems’, SIAM J. Sci. Stat. Comput., 7 , 865-869 (1986).

11. H. C. Elman, Y. Saad and P. E. Saylor, ‘A hybrid Chebyshev-Krylov subspace algorithm for solving nonsymmetric
systems of linear equations’, Yale University, Department of Computer Science, RR-301, February 1984.

12. S. C. Eisenstate, H. C. Elman and M. H. Schultz, ‘Variational iterative methods for nonsymmetric system of linear
equations’, SIAM J. Numer. Anal., 20, 345-351 (1983).

13. N. M. Nachtigal, L. Reichel and L. N. Trefethen, ‘A hybrid GMRES algorithm for nonsymmetric linear systems’, Proc.
Copper Mountain ConJ on Iteratioe Methods, April 1990 (accepted for publication in SIAM J. Matrix Anal. Appl.).

1991, pp. 129-139.).

373-38 1 .).

DOMAIN DECOMPOSITION IN CFD 165

14. P. E. Saylor and D. C. Smolarski, ‘Implementation of an adaptive algorithm for Richardson’s method’, Eidgeniissische
Technische Hochschule Zurich, Department of Informatics, Institute for Scientific Computing, Report 139, October
1990.

15. H. A. Van der Vorst, ‘Bi-CGSTAB a more smoothly converging variant of CG-S for the solution of nonsymmetrk
linear systems’, (accepted for publication in SIAM J. Sci. Stat. Comp.).

16. T. F. Chan and D. E. Keyes, ‘Interface preconditionings for domain-decomposed convection-diffusion operators’, in
T. F. Chan, R. Glowinski, J. PBriaux and 0. B. Widlund (eds), Third Int. Symp. on Domain Decomposition Methods for
Partial Differential Equations, 1990, pp. 245-262.

17. 0. C. Zienkiewiczi, J. Z. Zhu, A. W. Craig and M. Ainsworth, ‘Simple and practical error estimation and adaptivity:
h and h-p version procedures’, in J. E. Flaherty, P. J. Paslow, M. S. Shephard and J. D. Vasilakis (eds), Adaptiue
Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1989, pp. 100-1 14.

18. M. D. Smooke, ‘Solution of burner-stabilized pre-mixed laminar flames by boundary value methods’, J. Comput.

19. W. D. Gropp and D. E. Keyes, ‘Domain decomposition on parallel computers’, Impact Comput. Sci. Eng., 1,421-439
(1989).

20. P. F. Fischer and A. T. Patera, ‘Parallel spectral element methods for the incompressible Navier-Stokes equations’, in
J. H. Kane, A. D. Carlson and D. L. Cox (eds), Solution ofsuperlarge Problems in Computational Mechanics, Plenum,
New York, 1989, pp. 49-65.

21. M. J. Berger and S. H. Bokhari, ‘A partitioning strategy for non-uniform problems across multiprocessors’, IEEE
Trans. Comput., C-36, 570-580 (1987).

22. D. M. Nicol, J. H. Saltz and J. C. Townsend, ‘Delay point schedules for irregular parallel computations’, Int. J.
Parallel Process., 18, 69-90 (1989).

23. P. J. Roache, Computational Fluid Dynamics, Hermosa, Albuquerque, NM, 1972.
24. A. T. Patera, ‘A spectral element method for fluid dynamics: laminar flow in a channel expansion’, J. Comput. Phys.,

48, 468-488 (1984).
25. M. K. Denham and M. A. Patrick, ‘Laminar flow over a downstream-facing step in a two-dimensional flow channel’,

Trans. Inst. Chem. Eng., 52, 361-367 (1974).
26. A. Brandt, ‘The Weizmann Institute Research in Multilevel Computation: 1988 Report’, in J. Mandel, S. F.

McCormick, J. E. Dendy Jr., C. Farhat, G. Lonsdale, S. V. Parter, J. W. Ruge and K. Stuben (eds), Proc. Fourth
Copper Mountain Con$ on Multigrid Methods, SIAM, Philadelphia, PA, 1989, pp. 13-53.

27. J. M. Leone Jr., and P. M. Gresho, ‘Finite element simulations of steady, two-dimensional, viscous incompressible
flow over a step’, J. Comput. Phys., 41, 167-191 (1981).

28. M. D. Smooke and R. M. M. Mattheij, ‘On the solution of nonlinear two-point boundary value problems on
successively refined grids’, Appl. Numer. Math., 1, 463487 (1985).

29. J. E. Flaherty, P. J. Paslow, M. S. Shephard and J. D. Vasilakis (eds), Adaptioe Methods for Partial Differential
Equations, SIAM, Philadelphia, PA, 1989.

Phys., 48, pp. 72-105 (1982).

